
0

An Agent Architecture for Dynamic
Re-design of Agents

Frances M.T. Brazier, Catholijn M.Jonker, Jan Treur, and Niek J.E. Wijngaards

Vrije Universiteit Amsterdam, Department of Mathematics and Computer Science
 Artificial Intelligence Group

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Email: {frances, jonker, treur, niek}@cs.vu.nl

URL: http://www.cs.vu.nl/~{frances, jonker, treur, niek}

Abstract. This paper presents a generic architecture for an agent capable of
designing and creating new agents. The design agent itself is based on an existing
generic agent model, and includes a refinement of a generic model for design, in
which strategic reasoning and dynamic management of requirements are explicitly
modelled. This model is refined for the design of agents, or (parts of) multi-agent
systems. It includes an explicit formal representation at a logical level of (1)
requirements that can be formulated for agents and multi-agent systems, and (2)
design object descriptions of a (part of a) multi-agent system. The generic
architecture has been formally specified in DESIRE, and has been tested in a
prototype application.

1

1 Introduction

Agents that are able to dynamically design and create new agents, or to dynamically modify
existing agents can be very useful. For example, Internet agents that are capable of dynamically
creating new agents to assist them in information gathering, or agents that are capable of
creating interface agents tuned to specific users, are agents of this type. To design an agent
capable of (re)designing and creating agents, the following aspects must be addressed:

• an agent model as a basis for the design agent

• a model of the design task used by the design agent

• explicit representation within the design agent of requirements on agents to be
(re)designed and knowledge to derive refinements of these requirements

• explicit representation within the design agent of agent design object descriptions, and
knowledge to derive properties of design object descriptions

• a model and implementation of the execution of the creation action that actually creates
(while the multi-agent system is running) the designed agent on the basis of the design

In this paper a generic architecture is introduced for an agent capable of designing and creating
new agents, which was modelled using the compositional development method for multi-agent
systems DESIRE (Brazier, Dunin-Keplicz, Jennings and Treur, 1995). The design agent itself
is based on an existing generic agent model (Section 2.1), and includes a refinement of a
generic model for design (Brazier, Langen, Ruttkay and Treur, 1994), in which strategic
reasoning and dynamic management of requirements are explicitly modelled (Section 2.2). In
this paper this model is refined for the design of agents, or (parts of) multi-agent systems. It
includes an explicit formal representation at a logical level of (1) requirements that can be
formulated for agents and multi-agent systems (Section 3), and (2) design object descriptions of
a (part of a) multi-agent system (Section 4).

Client

PA

EW

C

PA

EW

D

C

PA

EW

Client

PA

EW

D

Figure 1 Redesign of a multi-agent system:
agent PA modifies the structure of the multi-agent system

2

Moreover, additional knowledge is included of different types, for example, knowledge that can
be used to derive whether a given design object description satisfies given properties (e.g.,
requirements), and knowledge that can be used to derive how to refine requirements into more
specific requirements. After an agent has been designed by the design agent, this design is
effectuated by execution of a creation action of the design agent in the external world. After this
creation action the multi-agent system functions with the additional agent.

In Figure 1 a sketch of the redesign process is depicted. The left box contains the multi-agent
system before modification (consisting of the agents Personal Assistant, Client and External
World), the right box after modification (with an additional agent D included). The Personal
Assistant (PA) plays the role of the design agent. It has internal representations of the multi-
agent system before modification and designs a modification of the system by adding an agent
D to the system. After this design process it effectuates the design by execution of the creation
action in the External World, which represents all material aspects, including the material
aspects of the agents.

2 A Generic Model of a Design Agent

The generic model of a design agent proposed in this paper is a refinement of a generic agent
model (Section 2.1) and includes a refinement of a generic model of design (Section 2.2).

2.1 A Generic Agent Model

Agents are often designed to perform their own specific tasks, for example the design of an
artifact. In addition, a number of generic agent tasks can be identified. This section describes a
generic agent model in which such generic agent tasks are modelled. This model abstracts from
the specific domain of application and can be (re)used for a large variety of agents. The model is
based on the abilities associated with the notion of weak agency (Wooldridge and Jennings,
1995). Instead of designing each and every new agent individually from scratch, a generic agent
model can be used to structure the design process: the acquisition of a specific agent model is
based on the generic structures in the model.

The characteristics of weak agency provide a means to reflect on the tasks an agent needs to be
able to perform. Pro-activeness and autonomy are related to an agent's ability to reason about its
own processes, goals and plans and to control these processes (own process control).
Reactivity and social ability are related to the ability to be able to communicate with other agents
(agent interaction management) and to interact with the external world (world interaction
management). The ability to communicate with other agents and to interact with the external
world often relies on the information an agent has of the world (maintenance of world
information) and other agents (maintenance of agent information). The generic agent model also
includes an empty generic component to model the agent specific task. The tasks related to the
generic abilities and agent specific tasks may be modelled by components within an agent as
depicted in Figure 2. In addition to the sub-components, the model includes information links
that specify which information is exchanged between components; these information links are
named.

3

 communicated
 info

 observation
 results
 to wim

 observed
 agent

info

 communicated
 agent
 info

Agent task control

Own
Process
Control

Maintenance
of Agent

Information

Agent
Specific

Task

Maintenance
of World

Information

Agent
Interaction

Management

World
Interaction

Management

 own process info to wim

 own process info to aim

 own
 process
 info to
 mai

 own
 process
 info to
 mwi info to be communicated

 communicated
 info to ast

 communicated world info

 observations and actions

 observed
 info to ast

 observed
 world info

 action and observation info from ast

 communication info from ast

 agent info to opc
 world info to opc

 agent info to wim

 agent info to aim

 world info to aim

 world info to wim

Figure 2 A Generic Agent Model

The exchange of information within the generic agent model can be described as follows.
Observation results are transferred through the information link observation results to wim from the
agent’s input interface to the component world interaction management. In addition, the component
world interaction management receives belief information from the component maintenance of world

information through the information link world info to wim, and the agent’s characteristics from the
component own process control through the link own process info to wim. The selected actions and
observations (if any) are transferred to the output interface of the agent through the information
link observations and actions.

The component maintenance of world information receives meta-information on observed world
information from the component world interaction management, through the information link
observed world info and meta-information on communicated world information (through the link
communicated world info) from the component agent interaction management. Epistemic information

4

from maintenance of world information, epistemic world info, is transferred to input belief info on world of
the components world interaction management, agent interaction management and own process control,

through the information links world info to wim, world info to aim and world info to opc.

Comparably the component maintenance of agent information receives meta-information on
communicated information from the component agent interaction management, through the
information link communicated agent info and meta-information on observed agent information
(through the link observed agent info) from the component world interaction management. Epistemic
information, epistemic agent info, is output of the component maintenance of agent information,
becomes input belief info on agents of the components world interaction management, agent interaction

management and own process control, through the information links agent info to wim, agent info to aim

and agent info to opc.

2.2 A Generic Model of Design

The generic model of a design agent is based on both the generic agent model discussed in
Section 2.1, and a generic model of the design task, used to model the agent specific task
component. In this section the structure of this agent specific task component for a design task
is discussed.

A generic model of design, in which reasoning about requirements and their qualifications,
reasoning about design object descriptions and reasoning about the design process are
distinguished, has been introduced in (Brazier, Langen, Ruttkay and Treur, 1994). This model
is based on a logical analysis of design processes (Brazier, Langen and Treur, 1996) and on
analyses of applications, including elevator configuration (Brazier, Langen, Treur, Wijngaards
and Willems, 1996) and design of environmental measures (Brazier, Treur and Wijngaards,
1996). The model not only provides an abstract description of a design process comparable to a
design model , e.g., (Coyne, Rosenman, Radford, Balachandran and Gero, 1990; Smithers,
1994), but also a generic structure which can be refined for specific design tasks in different
domains of application. Refinement of the generic task model of design, by specialisation and
instantiation, involves the specification of knowledge about applicable requirements and their
qualifications, about the design object domain, and about design strategies.

An initial design problem statement is expressed as a set of initial requirements and requirement
qualifications. Requirements impose conditions and restrictions on the structure, functionality
and behaviour of the design object for which a structural description is to be generated during
design. Qualifications of requirements are qualitative expressions of the extent to which
(individual or groups of) requirements are considered hard or preferred, either in isolation or in
relation to other (individual or groups of) requirements. At any one point in time during design,
the design process focuses on a specific subset of the set of requirements. This subset of
requirements plays a central role; the design process is (temporarily) committed to the current
requirement qualification set: the aim of generating a design object description is to satisfy these
requirements. Other qualifications of requirements may play a heuristic role.

During design the considered subsets of the set of requirements may change as may the
requirements themselves. The same holds for design object descriptions and design object
knowledge: they evolve during design. The strategy employed for the coordination of

5

requirement qualification set manipulation and design object description manipulation may also
change during the course of a single design process. Modifications to the requirement
qualification set, the design object description and the design strategy, may be the result of
straightforward implications drawn from knowledge available to a design support system.
Modifications may also be the result of specific knowledge on appropriate default assumptions
(see also (Smith and Boulanger,1994), or the result of interaction with an outside party (e.g., a
client or a designer). Figure 3 shows two levels of composition of the generic model for design.
Three processes are shown at the top level, together with the information exchange.

design

information linkcomponent c
c

DPC

DODM

RQSM

RQSM

RQS
modification

RQSM
history

maintenance

deductive
RQS

refinement

current
RQS

maintenance

DODM

DOD
modification

DODM
history

maintenance

deductive
DOD

refinement

current
DOD

maintenance

Figure 3 A generic model of design

The four processes (see Figure 3) related to the process requirement qualification set
manipulation are:
• RQS modification: the current requirement qualification set is analysed, proposals for

modification are generated, compared and the most promising (according to some measure)
selected,

• deductive RQS refinement: the current requirement qualification set is deductively refined by
means of the theory of requirement qualification sets,

• current RQS maintenance: the current requirement qualification set is stored and maintained,

6

• RQSM history maintenance: the history of requirement qualification sets modification is stored
and maintained.

The four processes related to the process of manipulation of design object descriptions are:
• DOD modification: the current design object description is analysed in relation to the current

requirement set, proposals for modification are generated, compared and the most promising
(according to some measure) selected,

• deductive DOD refinement: the current design object description is deductively refined by
means of the theory of design object descriptions,

• current DOD maintenance: the current design object description is stored and maintained,
• DODM history maintenance: the history of design object descriptions modification is stored

and maintained.

The process design process coordination is composed in a similar manner.

3 Representation of requirements within a design agent

The generic model of a design agent introduced in Section 2, can in principle be used for any
domain of application. The next step in this paper is to show how it can be used in the specific
domain of multi-agent system design. In this section a formal representation of requirements on
multi-agent systems is shown. Moreover, knowledge is presented that can be used to reason
about these requirements, to derive more specific requirements by refining the original
requirements. These more specific requirements play a crucial role in the design process: they
guide the direction in which solutions are sought.

In this section examples are given of the representation and manipulation (refinement) of
requirements on abilities of agents. A prototype design system for agent design has been
developed on which the examples are based. The examples are simplified to the extent that only
processes and information exchange are shown; issues such as control over processes and
definitions of information are not addressed in this paper.

Example Situation description

Figure 1 depicts the initial multi-agent system. Agent C represents the (human) client; agent PA
represents a personal assistant. The client can ask certain questions and the personal assistant provides
answers to these questions. For the sake of the example, consider the situation in which the client
poses a specific question for information. The personal assistant receives this request, and realizes that
it does not have the information asked for. However, the personal assistant is able to design other
agents to solve specific types of problems. To this end a number of requirements need to be formulated
and information on the structure of the multi-agent system needs to be acquired on the basis of which a
new agent can be designed to search for information to answer the question of the client.

Requirements are formulated in terms of abilities and properties of agents and the external
world. Abilities and properties can be assigned to

• individual agents,

• the external world,

• an individual agent in relation to the agents and the world with which it interacts,

• the world in relation to the agents with which it interacts, and

7

• a multi-agent system as a whole.

Example Prerequisites for re-design

The design agent (i.e. agent_A) formulates the following initial requirements for the new agent:

is_requirement(r_m1, has_property(mas_S, agent_solves_subproblem_for(agent_D, information_gatherer, agent_A)));

is_requirement(r_m2, agent_task_explication(agent_D, information_gatherer, searching(internet, scientific_publications)));

These requirements state that the new agent should solve subproblems for the existing agent A by
gathering information (which takes place in the external world). As specific subject of expertise for this
new agent, it should be able to search the internet for (and understand annotations of) scientific
publications. Not only requirements are needed to design a new agent, but also knowledge of the
structure of the existing multi-agent system. To this end the design agent A makes an explicit
observation in the external world EW and observes the structure of the existing multi-agent system. The
agent’s design task commences on the basis of these requirements and the structure of the multi-agent
system commences the agent its design task by manipulating requirements and by manipulating agent
representations.

Abilities of agents such as co-operation, bi-directional communication, and world interaction are
often needed for agents to jointly be able to perform a certain task. The next section describes
the ability of bi-directional communication in relation to the requirements on the multi-agent
system. For a description of other agent abilities see Brazier, Jonker, Treur and Wijngaards
(1997).

3 . 1 Generic ability of bi-directional communication

The ability of bi-directional communication can be refined, both with respect to its specialisation
(refinement of the ability into more specific abilities) and with respect to its realisation
(refinement of the ability into more fine-grained abilities related to reasoning about the ability,
and more fine-grained abilities abilities related to the effectuation of the ability).

b
i-

d
ir

ec
ti

o
n

al
co

m
m

u
n

ic
at

io
n

unidirectional
communication from others

unidirectional
communication to others

reasoning about
bi-directional communication

executing bi-directional
communication

reasoning about unidirectional
communication from others

reasoning about unidirectional
communication to others

executing unidirectional
communication from others

executing unidirectional
communication to others

more specific abilities

sp
ec

ial
isa

tio
ns

realisations

specialisations
specialisations

realisations

realisations

Figure 4 Refinements of the ability of bi-directional communication

Figure 4 shows the refinement relationships for the ability of bi-directional communication. The
more specific abilities related to bi-directional communication are the ability to communicate to
others (unidirectional communication to others) and the ability to receive communication from
others (unidirectional communication from others). The abilities related to the realisation of the

8

ability of bi-directional communication are the ability to reason about bi-directional
communication, and the ability to execute bi-directional communication.

These more specific abilities are further refined, and related to the ability to reason about
unidirectional communication from others, the ability to reason about unidirectional
communication to others, the ability to execute unidirectional communication from others, and
the ability to execute unidirectional communication to others.

Knowledge on refinements of the ability of bi-directional communication can be formally
represented as shown below. Meta-reasoning is employed to decide which refinement
alternative should be employed for which ability.

Example Representation of requirements refinement knowledge

Below two formal rules are presented which correspond to two refinements shown in Figure . The
format of a rule is as follows: the first condition specifies which requirement has been selected to be
refined. The second condition specifies the required ability or property, and the third condition concerns
which refinement alternative should be considered (which is decided elsewhere). The conclusions provide
possible refinements for the requirement in focus.

if is_requirement_selected_as_focus(R: requirement_name)
and is_requirement(R: requirement_name, has_ability(A: agent_name, bi_directional_communication(A2: agent_name)))
and refinement_alternative(specialisations)
then is_possible_refinement_for(R: requirement_name,

has_ability(A: agent_name, unidirectional_communication_from(A2: agent_name)))
and is_possible_refinement_for(R: requirement_name,

has_ability(A: agent_name, unidirectional_communication_to(A2: agent_name)));

if is_requirement_selected_as_focus(R: requirement_name)
and is_requirement(R: requirement_name,

has_ability(A: agent_name, unidirectional_communication_from(A2: agent_name)))
and refinement_alternative(realisations)
then is_possible_refinement_for(R: requirement_name,

has_ability(A: agent_name, reasoning_about_unidirectional_communication_from(A2: agent_name)))
and is_possible_refinement_for(R: requirement_name,

has_ability(A: agent_name, executing_unidirectional_communication_from(A2: agent_name)));

3 . 2 Manipulating required abilities

On the basis of the requirements given to the design process, additional, more refined,
requirements can be determined. The assumption underlying the refinement of requirements into
more specific requirements is that more specific requirements can be used to focus the design
process.

9

Example Manipulation of requirements

On the basis of the given requirements, more refined requirements can be formulated. For the first
requirement r_m1, refinement knowledge is applied which results in the following refinement graph:

has_ability(mas_S, agent_solves_subproblem_for(agent_D, information_gatherer, agent_A))

has_ability(agent_A, bi-directional_communication_with(agent_D))

has_ability(agent_D, bi-directional_communication_with(agent_A))

has_ability(agent_D, active_observation_in(world_W))

has_property(world_W, processing_active_observation_by(agent_D))

has_ability(agent_A, unidirectional_communication_from(agent_D))

has_ability(agent_A, unidirectional_communication_to(agent_D))

has_ability(agent_A, executing_unidirectional_communication_from(agent_D))

has_ability(agent_A, reasoning_about_unidirectional_communication_from(agent_D))

has_ability(agent_A, executing_unidirectional_communication_to(agent_D))

has_ability(agent_A, reasoning_about_unidirectional_communication_to(agent_D))

has_ability(agent_D, unidirectional_communication_from(agent_A))

has_ability(agent_D, unidirectional_communication_to(agent_A))

has_ability(agent_D, executing_unidirectional_communication_from(agent_A))

has_ability(agent_D, reasoning_about_unidirectional_communication_from(agent_A))

has_ability(agent_D, executing_unidirectional_communication_to(agent_A))

has_ability(agent_D, reasoning_about_unidirectional_communication_to(agent_A))

has_ability(agent_D, processing_observation_results_from(world_W))

has_ability(agent_D, observation_initiation_in(world_W))

has_ability(agent_D, reasoning_about_processing_observation_results_from(world_W))

has_ability(agent_D, executing_processing_observation_results_from(world_W))

has_ability(agent_D, reasoning_about_observation_initiation_in(world_W))

has_ability(agent_D, executing_observation_initiation_in(world_W))

These refined requirements are used to construct a design object description.

Within the above example the ability of active observation in the world is introduced. This
ability is refined into two specialised abilities: the ability of observation initiation and the ability
of processing observation results. Refinement with respect to realisation would have resulted in
the following refined abilities: ability of reasoning about observation initiation in the world,
ability of executing observation initation in the world, ability of reasoning about processing
observations results from the world, and ability of executing processing observation results
from the world.

4 Representation of an agent design within a design agent

The formal representation of requirements on multi-agent systems has been shown in Section 3.
In this section formal representations of design object descriptions for multi-agent systems are
presented. Moreover, knowledge that can be used to derive properties of the design, for
example the required properties, is presented.

4 . 1 . Compositional design object description

The implication of designing (parts of) a multi-agent system, is that the multi-agent system itself
is the object of design, and as such should be represented in a design object description. In this

10

paper the design object description is assumed to be a compositional object description. The
assumption underlying this decision is that a compositional structure facilitates the process of
(re-)design.

The description of the compositional system is augmented with a description relating existing
structures to generic models. This provides information useful for documentation purposes and
it also provides valuable information for the identification of abilities and properties.

Example Representation of an agent design

The design agent needs a representation of a multi-agent system including agents and the external world.
To this purpose, a representation based on objects and attributes is used. Part of the top level of the
multi-agent system can be represented as follows:

is_top_level(“c_00”);

has_value("c_00", corresponds_with, "mas_S");

has_value("c_01", corresponds_with, "agent_A");

has_value("c_04", corresponds_with, "world_W");

has_characterisation(“c_00”, generic, multi_agent_system);

has_characterisation(“c_01”, generic, agent);

has_characterisation(“c_4”, generic, external_world);

has_value(“lm_01", corresponds_with, "active_observations”);

has_value("c_00", subcomponent, "c_01");

has_value("c_00", subcomponent, "c_04");

has_value(“c_00”, information_link, “lm_01”);

has_value(“lm_01”, source_component, “c_01”);

has_value(“lm_01”, destination_component, “c_04”);

Unique identifiers are assigned to components and links so that names of links and components can be
reused in several parts of the composition.

4 . 2 . Modification of the top-level of the multi-agent system

The compositional structure of the design object guides the re-design process. Implications of
modifications to the compositional structure of a multi-agent system are first explored at the top-
level, then one level lower, et cetera.

11

Example Modification of the top-level of the multi-agent system

The result of modifying the top-level of the multi-agent system is shown below: on the basis of the
initial description of the multi-agent system and refined requirements, a new multi-agent system is
proposed which contains agent D.

initial multi agent system S

A

B

C

W

new top-level of multi agent system S

A

B

C

W

D

re-design
process

for
top-level

Note that although the agent D has been added and information links are present between D, A and W,
the agent D is an empty component at this point in the design process.

4 . 3 Modifications within the agent D

When modifying the description of the agent D, several possible intermediate descriptions are
explored during the re-design process. The description of an agent is constructed by modifying
previous design object descriptions.

Example Modifications within the agent D

During the re-design process several descriptions of agents are proposed. For example, an agent D (part
of design object description no. 14) may be proposed. Structural analysis shows that this particular
agent D does have the ability of ‘observation initiation’, yet lacks the ability of ‘bi-directional
communication’.

agent_D

W.I.M.

agent_D

W.I.M.

pa
rt

 o
f D

O
D

_1
4

pa
rt

 o
f D

O
D

_2
3

A.I.M.

A ‘better’ agent D (part of design object description no. 23) is shown in which both abilities are
incorporated, as was required.

Knowledge is needed to analyse any given design object description, to establish whether
particular abilities or properties hold. Particular goals, corresponding to the abilities and
properties in the current requirements are used to focus this reasoning process.

12

Example Identifying an ability

As an example of knowledge with which an ability can be identified, consider the follow rules.

The first rule states that if, in addition to having the necessary task control knowledge to activate the
world interaction process and links, the component with identifier I_agent has the generic structure of an
agent, includes a component for world interaction management, that is linked to the output interface of
the agent, and the agent is linked to the external world, then the agent has the ability of executing
observation initiation.

if has_characterisation(I_agent: ID, generic, agent)
and has_value(I_agent: ID, subcomponent, I_wim: ID)
and has_characterisation(I_wim: ID, generic, world_interaction_management)
and has_value(I_agent: ID, information_link, I_out: ID)
and has_value(I_out: ID, source_component, I_wim: ID)
and has_value(I_out: ID, destination_component, I_agent: ID)
and has_value(I_agent: ID, task_control, I_tc: ID)
and makes_awake(I_tc: ID, [I_wim: ID, I_out: ID])
and has_characterisation(I_world: ID, generic, external_world)
and has_value(I_link: ID, source_component, I_agent: ID)
and has_value(I_link: ID, destination_component, I_world: ID)
then has_ability(I_agent: ID, executing_observation_initiation_in(I_world: ID));

The rule below shows how the knowledge on refinement of abilities can also be used to conclude that a
more generic ability holds.

if has_ability(I_agent: ID, reasoning_about_unidirectional_communication_from(I_agent2: ID))
and has_ability(I_agent: ID, executing_unidirectional_communication_from(I_agent2: ID))
then has_ability(I_agent: ID, unidirectional_communication_from(I_agent2: ID));

When the re-design process has finished, the results include a set of requirements (based on the
initial requirements) and a design object description, for example with label dod_55, which
fulfills the set of requirements.

The ‘size’ of the resulting design object description can be ‘tuned’. In this situation only the
differences between the initial and new multi-agent system are of importance. This includes
adding agent D, communication from agent D to agent A and vice versa, interaction from agent
A to W and vice versa, plus modifications within agent A and W (to be able to handle agent D).

5 Creation action: realisation of a designed agent

After the design process within the component agent specific task of agent_A has been completed,
the agent decides to effectuate the modifications.

5.1 Preparation of the effectuation of the new design

As discussed in (Jonker and Treur, 1997) effectuation of the modification of the design can be
modelled by changing the material representation of the multi-agent system within the external
world.

13

Example Changing the material representation of the multi-agent system.

The resulting design object description, dod_55, contains the complete set of modifications that are to be
made to the multi-agent system mas_S (including the creation of a new agent). The design object
properties that together form dod_55, are represented by statements such as:

has_DOD_characteristic(“dod_55”, has_value(“c_05”, corresponds_with, “agent_D”));

has_DOD_characteristic(“dod_55”, has_value(“c_00”, subcomponent, “c_05”));

These statements reside at a meta-level with respect to design object description statements. The second
argument of each statement expresses relationships within the design object description.

The changes in the material representation of the multi-agent system are transferred from the
agent specific task of agent A to the world interaction management task and to the external world.
The modification action itself is derived by the component world interaction management.

Example Effectuation action for modifying the multi-agent system.

Within the world interaction management of agent_A, an action is formulated to effectuate the modification of
the current multi-agent system:

to_be_performed(modify_according_to(“dod_55”));

5.2 Execution of the creation action in the external world

To be able to execute the creation action in the external world, the external world needs to have
certain properties. These properties are related to how “equipped” the world is to handle
interaction with agents. There are two generic properties needed for the interaction of agents
with the external world: the processing of observations and the processing of actions.
Observation of the external world was needed to inform agent A of the current material
representation of the multi-agent system, see Section 4.1.

The property of processing actions can be refined into the properties:

• the external world can receive initiated actions, and the related information, and

• the external world can perform actions (effectuation of the physical effects of actions).

To change the number of agents and their characteristics, the external world has to adapt the
executable specification of that system while the system is running. This implies that the parts
of the system that are affected by the modifications need to be interrupted, their information
states stored, after which the executable specification of those parts need to be modified, and the
modified system need to be reactivated with the correct information states.

Example Result of the effectuation action.

The external world world_W effectuates the creation action and modifies the multi-agent system according
to the given modifications.

As an agent in the multi-agent system, agent D and receives a request from agent A: would it like to
find out more about YYY?. The agent D gathers information on subject YYY by initiating
observations in the world W, and interpreting the observation results. Once the answer is found, agent
D reports its findings to agent A. Agent A can then which finally answer the question of the client.

14

6 Discussion

Research within multi-agent systems research has focussed on the behaviour of individual
agents and their interaction. The dynamic creation of new agents within an existing multi-agent
system, on the basis of the identification of newly required functionality and behaviour, is an
area on which little research has focussed. Most of the research in the area of dynamic agent
creation is based on a genetic programming approach; e.g., (Cetnarowicz, Kisiel-Dorohinicki
and Nawarecki, 1996; Numaoka, 1996). The approach taken in this paper is that to create new
agents, an existing agent must be capable of designing a new agent on the basis of a model for
design and then be capable of bringing this agent to life.

To design an agent capable of designing another agent, insight is required in the type of agent to
be designed. In this paper a compositional approach to agent design has been followed. An
agent's abilities are related to the tasks an agent is able to perform. These abilities are the means
with which both the existing agents' abilities are expressed. In addition, the properties of the
multi-agent system and the external world are of importance. As such, this work is related to the
properties distinguished with respect to problem solving methods (Benjamins, Fensel and
stratman, 1996; Breuker, 1997; Fensel, Motta, Decker, and Zdrahal, 1997). Within the field of
Knowledge Engineering properties of problem solving methods are used to support knowledge
engineers during the design process: providing a means to describe existing generic components
that may be used, modified or refined during a design process, depending on their applicability
in a given situation. The Knowledge Engineering community has not focussed on abilities and
properties of agents and their interaction, as was done in this paper.

The architecture of the design agent is based on an existing generic agent model, and includes a
refinement of a generic model of design. It combines results from the area of Multi-Agent
Systems and the area of AI and Design. The approach described has been formalised: the initial
multi-agent system described in this system has been specified and implemented, using the
automated implementation generator within the DESIRE software environment, as have the
design agent, the new agent and its creation within the new multi-agent system. The formal
agent model presented in this paper includes formalisations of agent design descriptions and
requirements on agents within an agent, and formalisations of agent design knowledge.

One aspect of the approach described in this paper is that a design agent not only designs
another agent and the implications for the integration of the agent in an existing system at a
conceptual level, the design agent also actually creates the new agent dynamically. In fact, a
design agent could re-design (parts of) itself in the same manner. The integration of re-design
on a conceptual and logical level and run-time modification of the system at the implementation
level is an important distinguishing aspect of the approach presented in this paper. This is in
contrast to, on the one hand, conceptual and logical approaches for which no direct connection
to executable code exists, and, on the other hand, to approaches that address agent creation at an
implementation level.

15

Acknowledgements

The authors wish to thank Pieter van Langen for his contributions to the generic model of
design, and Lourens van der Meij and Frank Cornelissen for their support of the DESIRE

modeling and specification tools. This research has been (partially) supported by NWO-SION

within project 612-322-316: “Evolutionary design in knowledge-based systems” (REVISE).

References

Benjamins, R., Fensel, D., and Straatman, R. (1996). Assumptions of Problem-Solving
Methods and their Role in Knowledge Engineering. In: Wahlster, W. (ed.). Proceedings
European Conference on AI (ECAI ’96), Wiley and Sons, Chichester.

Brazier, F.M.T., Dunin-Keplicz, B.M., Jennings, N.R. and Treur, J. (1995) Formal
Specification of Multi-Agent Systems: a Real World Case, In: Lesser, V. (Ed.), Proceedings
First International Conference on Multi-Agent Systems, ICMAS’95, MIT Press, pp. 25-32.
Extended version in: Huhns, M. and Singh, M. (Eds.), International Journal of Co-operative
Information Systems, IJCIS vol. 6 (1), special issue on Formal Methods in Co-operative
Information Systems: Multi-Agent Systems, pp. 67-94.

BRAZIER, F.M.T., JONKER, C.M., TREUR, J. and WIJNGAARDS, N.J.E. (1997). The Role of
Abilities of Agents in Re-design. Submitted to: KAW’98, Gaines, B. and Musen, M. (Eds).
11th knowledge acquisition workshop. URL: http://www.cs.vu.nl/~niek/kaw98/
BrazierJonkerTreurWijngaards.html.

Brazier, F.M.T., Langen, P.H.G. van, Ruttkay Zs., and Treur, J. (1994). On formal
specification of design tasks. In Gero, J.S., and Sudweeks, F. (eds.) Artificial Intelligence
in Design ’94 Kluwer Academic Publishers, Dordrecht, pp. 535-552.

Brazier, F.M.T., Langen, P.H.G. van, and Treur, J. (1996). A logical theory of design. In:
Advances in Formal Design Methods for CAD, J.S. Gero (ed.), Chapmann & Hall, New
York, 1996, pp. 243-266.

Brazier, F.M.T., Langen, P.H.G. van, Treur, J., Wijngaards, N.J.E. and Willems, M.
(1996). Modelling an elevator design task in Desire: the VT example. In: Schreiber, A.Th.,
and Birmingham, W.P. (Eds.), Special Issue on Sisyphus-VT. International Journal of
Human-Computer Studies, 1996, 44, pp. 469-520.

Brazier, F. M. T., Treur, J., and Wijngaards, N. J. E. (1996b). Interaction with experts: the
role of a shared task model. In: Wahlster, W. (ed.). Proceedings European Conference on
AI (ECAI ’96), pp. 241–245. Wiley and Sons, Chichester.

Breuker, J.A. (1997). Problems in indexing problem solving methods. In: FENSEL, D. (ed.)
Proceedings of the Problem Solving Methods for Knowledge Based Systems workshop,
IJCAI’97, pp. 19-35.

Cetnarowicz, K., Kisiel-Dorohinicki, M., and Nawarecki, E. (1996). The Application of
Evolution Process in Multi-Agent World to the Prediction System. In: Tokoro, M. (Ed.)
Proceedings of the Second International Conference on Multi-Agent Systems, ICMAS’96,
AAAI p RESS, MENLO PARK CA, PP. 26-32.

Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., and Gero, J.S. (1990).
Knowledge-based design systems Addison-Wesley Publishing Company, Reading.

Fensel, D., Motta, E., Decker, S., and Zdrahal, Z. (1997). Using Ontologies for Defining
Tasks, Problem-Solving Methods and their Mappings. In: Plaza, E. and Benjamins, R.
(Eds.). Knowledge Acquisition, Modeling and Management, proceedings of the 10th
European workshop, EKAW’97, Lecture Notes in Artificial Intelligence, 1319, Springer,
Berlin, pp. 113-128.

Jonker, C.M., and J. Treur (1997). Modelling an Agent’s Mind and Matter. In: Proceedings of
the 8th European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW’97, Lecture Notes in AI, vol. 1237, Springer Verlag, pp. 210-233.

Numaoka, C. (1996). Bacterial Evolution Algorithm for Rapid Adaptation. In: Van de Velde,
W. and Perram, J.W. (Eds.) Proceedings of the 7th European Workshop on Modelling

16

Autonomous Agents in a Multi-Agent World, MAAMAW’96, Lecture Notes in Artificial
Intelligence, 1038, Springer, pp. 139-148.

Smith, I.F.C., and Boulanger, S. (1994). Knowledge representation for preliminary stages of
engineering tasks Knowledge Based Systems, 7, pp. 161-168.

Smithers, T. (1994). On knowledge level theories of design process. In Gero, J.S., and
Sudweeks, F. (eds.) Artificial Intelligence in Design ’96 Kluwer Academic Publishers,
Dordrecht, pp. 561-579

Wooldridge, M.J. and Jennings, N.R. (1995). Intelligent Agents: Theory and Practice. In:
Knowledge Engineering Review, 10(2), pp. 115-152.

